Publications and Data
‡Rice Lab Postdoc, †Rice Lab Student, ^Rice Lab data/visiting student
In Review and Revision
French, M.E., J.R. Delph, and C. Condit, A rheologic model for the depth distribution of slip along the subduction megathrust, in review
†Williams, S., M.E. French, ^Rubin, C., and †E. Mckenzie, Using calcite deformation twins to constrain subduction-related paleostress state and deformation temperatures: A case study using the exhumed Sestola-Vidiciatico unit of the Northern Apennines, in press at Geosphere
Published
†Belzer, B. , M.E. French, and N.J. Phillips (2025), K‐Metasomatic Weakening of Oceanic Crust at Shallow Subduction Depths: Evidence From the Rodeo Cove Thrust Zone, Marin Headlands, California, Geochemistry, Geophysics, Geosystems, doi: 10.1029/2025GC012221
Data: https://zenodo.org/records/14967402
†Williams, S. and M.E. French (2024), Effects of dilatant hardening on fault stabilization and structural development, Geophys. Res. Lett., 51, doi: 10.1029/2024GL108840
Data: https://doi.org/10.5281/zenodo.10656036
†Belzer, B. and M.E. French (2024), Path and slip dependent behavior of shallow subduction shear zones during fluid overpressure, J. Geophys. Res. Solid Earth, 129, doi: 10.1029/2023JB027502
Data: https://doi.org/10.5281/zenodo.8156673
†Fliedner, C. and M.E. French (2023), Dispersive elastic moduli and attenuation due to wave-induced fluid flow in metapelite, Seismica, 3(1), doi: 10.26443/seismica.v3i1.624
Data Files: 1, 2, 3, 4, 5, 6, 7, 8, 9
†Fliedner, C. and M.E. French (2023), Measurements of wave-induced attenuation in saturated metapelite and the band-limitation of low-frequency earthquakes, AGU Advances, doi: 10.1029/2022AV000837 Featured as an AGU Advances Editor’s Highlight
Data Files: 1, 2, 3, 4, 5
†Belzer, B. and M.E. French (2022), Frictional Constitutive Behavior of Chlorite at Low Shearing Rates and Hydrothermal Conditions, Tectonophysics, doi:10.1016/j.tecto.2022.229435.
‡Condit, C. and M. E. French (2022), Geologic Evidence of lithostatic pore fluid pressures at the base of the subduction seismogenic zone, Geophys. Res. Lett., doi:10.1029/2022GL098862.
Data: https://zenodo.org/record/6575023#.Y26XRy2B30o
Morgan, J. K., E. A. Solomon, A. Fagereng, H. M. Savage, M. Wang, F. Meneghini, P. M. Barnes, R. Bell, M. E. French, N. Bangs, H. Kitajima, D. M. Saffer, L. M. Wallace (2022), Seafloor overthrusting causes ductile fault deformation and fault sealing along the northern Hikurangi Margin, Earth Planet. Sci. Lett., 593 , doi:10.1016/j.epsl.2022.117651.
French, M. E., W. Zhu, X. Xiaohui, B. Evans, D. J. Prior (2022), Enhanced water weakening of the Solnhofen limestone at elevated temperature, J. Geophys. Res. Solid Earth, 127, doi:10.1029/2021JB022742.
Data: https://scholarship.rice.edu/handle/1911/111508
‡Condit, C., M. E. French, J. A. Hayles, L.Y. Yeung, E. J. Chin, and C. A. Lee (2022), Rheology of metasedimentary rocks at the base of the subduction seismogenic zone, Geochemistry, Geophysics, Geosystems, doi: 10.1029/2021GC010194.
Data: https://zenodo.org/record/5800267#.Y26Xwi2B30o
†Fliedner, C. and M.E. French (2021), Pore and mineral fabrics control the elastic wave velocities of metapelite with implications for subduction zone tomography, J. Geophys. Res. Solid Earth, 126, doi: 10.1029/2021JB022361.
Data: https://scholarship.rice.edu/handle/1911/111039
French, M.E. and J. K. Morgan (2020), Pore fluid pressures and strength contrasts maintain frontal fault activity, northern Hikurangi margin, New Zealand, Geophys. Res. Lett., 47 (21), doi: 10.1029/2020GL089209.
Data: https://scholarship.rice.edu/handle/1911/109120
‡Condit, C., V. E. Guevara, J. R. Delph, and M. E. French (2020), Slab dehydration in warm subduction zones at depths of episodic slip and tremor, Earth Planet. Sci. Lett., 552, doi: 10.1016/j.epsl.2020.116601.
^Phillips, N., †B. Belzer, M. E. French, C. Rowe, and K. Ujiie (2020), Frictional Strengths of Subduction Thrust Rocks in the Region of Shallow Slow Earthquakes, J. Geophys. Res. Solid Earth, 125, doi: 10.1029/2019JB018888.
French, M.E. and ‡C. Condit (2019), Slip partitioning along an idealized subduction plate boundary at deep slow slip conditions, Earth Planet. Sci. Lett., 528, doi: 10.1016/j.epsl.2019.115828.
Xing, T., W. Zhu, M. E. French, and †B. Belzer (2019), Stabilizing Effect of High Pore Fluid Pressure on Slip Behaviors of Gouge-Bearing Faults, J. Geophys. Res. Solid Earth, 124, doi: 10.1029/2019JB018002.
Data: https://doi.org/10.13016/gosd‐zmob
French, M.E., G. Hirth, and K. Okazaki (2019), Fracture-induced pore fluid pressure weakening and dehydration in serpentinite, Tectonophysics, doi: 10.1016/j.tecto.2019.228168.
Data: https://data.mendeley.com/datasets/4jk9skjy3k/1
and J. S. Chester (2018), Localized slip and associated fluidized structures record seismic slip in clay-rich fault gouge, J. Geophys. Res. Solid Earth, doi: 10.1029/2018JB016053.
Data: https://doi.org/10.25611/kytg-mw69
and W. Zhu (2017), Slow fault propagation in serpentinite under conditions of high pore fluid pressure, Earth Planet. Sci. Lett., 473, doi: 10.1016/j.epsl.2017.06.009.
French, M. E., , and (2016), Fault slip controlled by stress path and fluid pressurization rate, Geophys. Res. Lett., 43, 4330–4339, doi:10.1002/2016GL068893.
French, M. E., F. M. Chester, J. S. Chester, and J. E. Wilson (2016), Stress-dependent transport properties of fractured arkosic sandstone, Geofluids, doi: 10.1111/gfl.12174.
, F. M. and J. S. (2015), Micromechanisms of creep in clay-rich gouge from the Central Deforming Zone of the San Andreas Fault. J. Geophys. Res. Solid Earth, 120:827–849. doi: 10.1002/2014JB011496.
Coble, C. G, M. E. French, F. M. Chester, J. S. Chester, and H. Kitajima (2014), In situ frictional properties of San Andreas Fault gouge at SAFOD, Geophys. J. Int., 199 (2), doi:10.1093/gji/ggu306.
French, M. E., H. Kitajima, J. S. Chester, F. M. Chester, and T. Hirose (2014), Displacement and dynamic weakening processes in smectite-rich gouge from the Central Deforming Zone of the San Andreas Fault, J. Geophys. Res. Solid Earth, 119, doi:10.1002/2013JB010757.
French, M. E., D. F. Boutt, and L. B. Goodwin (2012), Sample dilation and fracture in response to high pore fluid pressure and strain rate in quartz-rich sandstone and siltstone, J. Geophys. Res. Solid Earth, 117, doi:10.1029/2011JB008707.